p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊C16, C24.1C8, C22.2M5(2), C22⋊C16⋊1C2, (C2×C8).290D4, (C23×C4).2C4, (C22×C8).5C4, (C22×C4).1C8, C2.2(C23⋊C8), C22.2(C2×C16), C23.26(C2×C8), C4.35(C23⋊C4), C2.3(C22⋊C16), C2.1(C23.C8), (C2×C4).54M4(2), (C22×C8).1C22, C4.20(C4.D4), C22.33(C22⋊C8), (C2×C22⋊C8).7C2, (C22×C4).427(C2×C4), (C2×C4).376(C22⋊C4), SmallGroup(128,46)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊C16
G = < a,b,c,d | a2=b2=c2=d16=1, ab=ba, ac=ca, dad-1=abc, dbd-1=bc=cb, cd=dc >
Subgroups: 160 in 70 conjugacy classes, 26 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C16, C2×C8, C2×C8, C22×C4, C22×C4, C24, C22⋊C8, C2×C16, C22×C8, C23×C4, C22⋊C16, C2×C22⋊C8, C23⋊C16
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C16, C22⋊C4, C2×C8, M4(2), C22⋊C8, C23⋊C4, C4.D4, C2×C16, M5(2), C23⋊C8, C22⋊C16, C23.C8, C23⋊C16
(1 9)(2 17)(3 26)(5 13)(6 21)(7 30)(10 25)(11 18)(14 29)(15 22)(20 28)(24 32)
(1 9)(2 25)(3 11)(4 27)(5 13)(6 29)(7 15)(8 31)(10 17)(12 19)(14 21)(16 23)(18 26)(20 28)(22 30)(24 32)
(1 32)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,9)(2,17)(3,26)(5,13)(6,21)(7,30)(10,25)(11,18)(14,29)(15,22)(20,28)(24,32), (1,9)(2,25)(3,11)(4,27)(5,13)(6,29)(7,15)(8,31)(10,17)(12,19)(14,21)(16,23)(18,26)(20,28)(22,30)(24,32), (1,32)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,9)(2,17)(3,26)(5,13)(6,21)(7,30)(10,25)(11,18)(14,29)(15,22)(20,28)(24,32), (1,9)(2,25)(3,11)(4,27)(5,13)(6,29)(7,15)(8,31)(10,17)(12,19)(14,21)(16,23)(18,26)(20,28)(22,30)(24,32), (1,32)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,9),(2,17),(3,26),(5,13),(6,21),(7,30),(10,25),(11,18),(14,29),(15,22),(20,28),(24,32)], [(1,9),(2,25),(3,11),(4,27),(5,13),(6,29),(7,15),(8,31),(10,17),(12,19),(14,21),(16,23),(18,26),(20,28),(22,30),(24,32)], [(1,32),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | D4 | M4(2) | M5(2) | C23⋊C4 | C4.D4 | C23.C8 |
kernel | C23⋊C16 | C22⋊C16 | C2×C22⋊C8 | C22×C8 | C23×C4 | C22×C4 | C24 | C23 | C2×C8 | C2×C4 | C22 | C4 | C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 16 | 2 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of C23⋊C16 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,8,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23⋊C16 in GAP, Magma, Sage, TeX
C_2^3\rtimes C_{16}
% in TeX
G:=Group("C2^3:C16");
// GroupNames label
G:=SmallGroup(128,46);
// by ID
G=gap.SmallGroup(128,46);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,346,136,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^16=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations